

	Filtering

	var col = from o in Orders

 where o.CustomerID == 84

 select o;
	var col2 = Orders.Where(o => o.CustomerID == 84);

	Return Anonymous Type

	var col = from o in orders

 select new

 {

 OrderID = o.OrderID,

 Cost = o.Cost

 };

	var col2 = orders.Select(o => new

 {

 OrderID = o.OrderID,

 Cost = o.Cost

 }
);

	Ordering

	var col = from o in orders

 orderby o.Cost ascending
 select o;

	var col2 = orders.OrderBy(o => o.Cost);

	var col3 = from o in orders

 orderby o.Cost descending
 select o;

	var col4 = orders.OrderByDescending(o => o.Cost);

	var col9 = from o in orders

 orderby o.CustomerID, o.Cost descending
 select o;

	var col6 = orders.OrderBy(o => o.CustomerID).
 ThenByDescending(o => o.Cost);

	//returns same results as above
var col5 = from o in orders

 orderby o.Cost descending
 orderby o.CustomerID

 select o;

//NOTE the ordering of the orderby’s

	

	Joining

	var col = from c in customers

 join o in orders on
 c.CustomerID equals o.CustomerID

 select new
 {
 c.CustomerID,
 c.Name,
 o.OrderID,
 o.Cost
 };
	var col2 = customers.Join(orders,
 c => c.CustomerID,o => o.CustomerID,
 (c, o) => new
 {
 c.CustomerID,
 c.Name,
 o.OrderID,
 o.Cost
 }
);

	Grouping

	var OrderCounts = from o in orders

 group o by o.CustomerID into g

 select new

 {

 CustomerID = g.Key,

 TotalOrders = g.Count()

 };
	var OrderCounts1 = orders.GroupBy(
 o => o.CustomerID).
 Select(g => new
 {
 CustomerID = g.Key,
 TotalOrders = g.Count()
 });

	NOTE:
the grouping’s key is the same type as the grouping value. E.g. in above example grouping key is an int because o.CustomerID is an int.

	Paging (using Skip & Take)

	//select top 3
var col = (from o in orders

 where o.CustomerID == 84

 select o).Take(3);

	var col2 = orders.Where(
 o => o.CustomerID == 84
).Take(3);

	//skip first 2 and return the 2 after
var col3 = (from o in orders

 where o.CustomerID == 84

 orderby o.Cost

 select o).Skip(2).Take(2);

	var col3 = (from o in orders

 where o.CustomerID == 84

 orderby o.Cost

 select o).Skip(2).Take(2);

	Element Operators (Single, Last, First, ElementAt, Defaults)

	//throws exception if no elements
var cust = (from c in customers

 where c.CustomerID == 84

 select c).Single();

	var cust1 = customers.Single(
 c => c.CustomerID == 84);

	//returns null if no elements

var cust = (from c in customers

 where c.CustomerID == 84

 select c).SingleOrDefault();

	var cust1 = customers.SingleOrDefault(
 c => c.CustomerID == 84);

	//returns a new customer instance if no elements

var cust = (from c in customers

 where c.CustomerID == 85

 select c).DefaultIfEmpty(
 new Customer()).Single();

	var cust1 = customers.Where(
 c => c.CustomerID == 85
).DefaultIfEmpty(new Customer()).Single();

	//First, Last and ElementAt used in same way

var cust4 = (from o in orders

 where o.CustomerID == 84

 orderby o.Cost

 select o).Last();

	var cust5 = orders.Where(
 o => o.CustomerID == 84).
 OrderBy(o => o.Cost).Last();

	//returns 0 if no elements

var i = (from c in customers

 where c.CustomerID == 85

 select c.CustomerID).SingleOrDefault();

	var j = customers.Where(
 c => c.CustomerID == 85).
 Select(o => o.CustomerID).SingleOrDefault();

	NOTE:

Single, Last, First, ElementAt all throw exceptions if source sequence is empty.

SingleOrDefault, LastOrDefault, FirstOrDefault, ElementAtOrDefault all return default(T) if source sequence is empty. i.e. NULL will be returned if T is a reference type or nullable value type; default(T) will be returned if T is a non-nullable value type (int, bool etc). This can be seen in the last example above.

	Conversions

	ToArray

	
string[] names = (from c in customers

 select c.Name).ToArray();

	ToDictionary

	
Dictionary<int, Customer> col = customers.ToDictionary(c => c.CustomerID);

Dictionary<string, double> customerOrdersWithMaxCost = (from oc in

(from o in orders join c in customers on o.CustomerID equals c.CustomerID

select new { c.Name, o.Cost })

group oc by oc.Name into g

 select g).ToDictionary(g => g.Key, g => g.Max(oc => oc.Cost));

	ToList

	
List<Order> ordersOver10 = (from o in orders

where o.Cost > 10

 orderby o.Cost).ToList();

	ToLookup

	
ILookup<int, string> customerLookup =
 customers.ToLookup(c => c.CustomerID, c => c.Name);

